



Roll No. 

|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|
|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APRIL / MAY 2024

Department of Industrial Engineering  
VI Semester

**IE5004- ADVANCED OPTIMIZATION TECHNIQUES**

(Regulation 2019)

Time: 3hrs

Max. Marks: 100

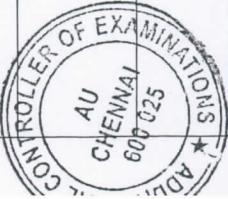
|      |                                                                                                   |
|------|---------------------------------------------------------------------------------------------------|
| CO 1 | To impart knowledge to model and solve Integer programming problems.                              |
| CO 2 | To model and solve problems using dynamic programming.                                            |
| CO 3 | To solve single- and multiple-variable unconstrained and constrained nonlinear.                   |
| CO 4 | To solve non-linear problem using KKT condition, quadratic programming and separable programming. |
| CO 5 | To apply meta heuristics for solving engineering problems                                         |

**BL – Bloom's Taxonomy Levels**

(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analyzing, L5 - Evaluating, L6 - Creating)

**PART- A (10 x 2 = 20 Marks)**

(Answer all Questions)


| Q. No | Questions                                                                         | Marks | CO | BL |
|-------|-----------------------------------------------------------------------------------|-------|----|----|
| 1     | Difference between goal and goal deviation? What are the types of goal deviation? | 2     | 1  | L1 |
| 2     | What are the types of integer programming problems?                               | 2     | 1  | L2 |
| 3     | What are the application of dynamic programming?                                  | 2     | 2  | L2 |
| 4     | State Bellman's principle of optimality?                                          | 2     | 2  | L1 |
| 5     | Difference between convex and concave function?                                   | 2     | 3  | L1 |
| 6     | What are the necessary condition to solving multi-variable unconstrained NLP?     | 2     | 3  | L2 |
| 7     | What is Hessian Matrix and give some example?                                     | 2     | 4  | L1 |
| 8     | Define Kuhn-tucker condition?                                                     | 2     | 4  | L1 |
| 9     | What is meant by a metaheuristic algorithm? Name some algorithm.                  | 2     | 5  | L1 |
| 10    | List the operating parameters of the genetic algorithm?                           | 2     | 5  | L2 |

**PART- B (5 x 13 = 65 Marks)**

| Q. No                        | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks                        | CO         | BL |      |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|----|------|----|--|--|---|--|---|--|---|--|----|----|----|----|----|----|---|------|---|------|---|------|---|---|------|---|------|---|------|---|---|------|---|------|---|------|---|----|---|----|
| 11 (a) (i)                   | <p>Solve the following integer programming problem using the branch and bound method</p> <p>Minimize <math>Z = 3 X_1 + 2.5 X_2</math></p> <p>subject to the constraints</p> <p>(i) <math>X_1 + 2 X_2 \geq 20</math></p> <p>(ii) <math>3 X_1 + 2 X_2 \geq 50</math></p> <p><math>X_1, X_2 \geq 0</math> and integers.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                           | 1          | L3 |      |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| <b>OR</b>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |            |    |      |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| 11 (b) (i)                   | <p>Use modified simplex method to solve the following GP problem</p> <p>Minimize <math>Z = P_1^- + P_2 (2 d_2^- + d_3^-) + P_3 d_1^+</math></p> <p>subject to the constraints</p> <p>(i) <math>X_1 + X_2 + d_1^- - d_1^+ = 400</math></p> <p>(ii) <math>X_1 + d_2^- = 200</math></p> <p>(iii) <math>X_1 + d_3^- = 300</math></p> <p><math>X_1, X_2, d_1^-, d_1^+, d_2^-, d_3^- \geq 0</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                           | 1          | L3 |      |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| 12 (a) (i)                   | <p>Consider the problem of designing an electronic device that consists of three main components. The components are arranged in series so that the failure of one of them will result in the failure of the whole device. Therefore, it is decided that the reliability (probability of failure) of the device should be increased by installing parallel units on each component. Each component may be installed in, at the most, three parallel units. The total capital (in thousand Rs) available for the device is 10. The following data is available:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th rowspan="3">Number of Parallel Units, mi</th> <th colspan="6">Components</th> </tr> <tr> <th colspan="2">1</th> <th colspan="2">2</th> <th colspan="2">3</th> </tr> <tr> <th>r1</th> <th>c1</th> <th>r2</th> <th>c2</th> <th>r3</th> <th>c3</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>0.50</td> <td>2</td> <td>0.70</td> <td>3</td> <td>0.60</td> <td>1</td> </tr> <tr> <td>2</td> <td>0.70</td> <td>4</td> <td>0.80</td> <td>5</td> <td>0.80</td> <td>2</td> </tr> <tr> <td>3</td> <td>0.90</td> <td>5</td> <td>0.90</td> <td>6</td> <td>0.90</td> <td>3</td> </tr> </tbody> </table> | Number of Parallel Units, mi | Components |    |      |    |  |  | 1 |  | 2 |  | 3 |  | r1 | c1 | r2 | c2 | r3 | c3 | 1 | 0.50 | 2 | 0.70 | 3 | 0.60 | 1 | 2 | 0.70 | 4 | 0.80 | 5 | 0.80 | 2 | 3 | 0.90 | 5 | 0.90 | 6 | 0.90 | 3 | 13 | 2 | L3 |
| Number of Parallel Units, mi | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |            |    |      |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
|                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 2          |    | 3    |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
|                              | r1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c1                           | r2         | c2 | r3   | c3 |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| 1                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                            | 0.70       | 3  | 0.60 | 1  |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| 2                            | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                            | 0.80       | 5  | 0.80 | 2  |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| 3                            | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                            | 0.90       | 6  | 0.90 | 3  |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |
| <b>OR</b>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |            |    |      |    |  |  |   |  |   |  |   |  |    |    |    |    |    |    |   |      |   |      |   |      |   |   |      |   |      |   |      |   |   |      |   |      |   |      |   |    |   |    |



| 12 (b) (i)  | <p>An organization is planning to diversify its business with a maximum outlay of Rs. 5 crores. It has identified three different locations to install plants. The organization can invest in one or more of these plants subject to the availability of the fund. The different possible alternatives and their investment (in crores of rupees) and present worth of returns during the useful life (in crores of rupees) of each of these plants are summarized in table. The first row of table has zero cost and zero return for all the plants. Hence, it is known as do-nothing alternative. Find the optimal allocation of the capital to different plants which will maximize the corresponding sum of the present worth of returns</p> <table border="1" data-bbox="323 692 1179 1009"> <thead> <tr> <th rowspan="2">Alternative</th><th colspan="2">Plant 1</th><th colspan="2">Plant 2</th><th colspan="2">Plant 3</th></tr> <tr> <th>cost</th><th>return</th><th>cost</th><th>return</th><th>cost</th><th>return</th></tr> </thead> <tbody> <tr> <td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr> <tr> <td>2</td><td>1</td><td>15</td><td>2</td><td>14</td><td>1</td><td>3</td></tr> <tr> <td>3</td><td>2</td><td>18</td><td>3</td><td>18</td><td>2</td><td>7</td></tr> <tr> <td>4</td><td>4</td><td>28</td><td>4</td><td>21</td><td>-</td><td>-</td></tr> </tbody> </table> | Alternative | Plant 1 |        | Plant 2 |        | Plant 3 |  | cost | return | cost | return | cost | return | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 15 | 2 | 14 | 1 | 3 | 3 | 2 | 18 | 3 | 18 | 2 | 7 | 4 | 4 | 28 | 4 | 21 | - | - | 13 | 2 | L3 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|--------|---------|--------|---------|--|------|--------|------|--------|------|--------|---|---|---|---|---|---|---|---|---|----|---|----|---|---|---|---|----|---|----|---|---|---|---|----|---|----|---|---|----|---|----|
| Alternative | Plant 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Plant 2 |        | Plant 3 |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
|             | cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | return      | cost    | return | cost    | return |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 1           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0           | 0       | 0      | 0       | 0      |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15          | 2       | 14     | 1       | 3      |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 3           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18          | 3       | 18     | 2       | 7      |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 4           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28          | 4       | 21     | -       | -      |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 13 (a) (i)  | <p>Solve the following single – variable unconstrained problem<br/> <math display="block">\text{Maximize } f(x) = 8X - 3X^2 + X^3 - 2X^4 - X^6</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13          | 3       | L4     |         |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| <b>OR</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |         |        |         |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 13 (b) (i)  | <p>Minimize <math>f(x_1, x_2) = X_1 - X_2 + 2X_1^2 + 2X_1 X_2 + X_2^2</math>, starting from the point <math>X_1 = (0,0)</math> using Fletcher Reeves method</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13          | 3       | L4     |         |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 14 (a) (i)  | <p>Solve the following nonlinear programming problem using Kuhn-Tucker conditions.<br/> <math display="block">\text{Minimize } Z = 8X_1 + 10X_2 - X_1^2 - X_2^2</math><br/> subject to the constraints<br/> (i) <math>3X_1 + 2X_2 \leq 6</math><br/> <math>X_1, X_2 \geq 0</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13          | 4       | L4     |         |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| <b>OR</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |         |        |         |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |
| 14 (b) (i)  | <p>Use Beale's method to solve quadratic programming problem:<br/> <math display="block">\text{Maximize } Z = 2X_1 + 3X_2 - 3X_2^2</math><br/> subject to the constraints<br/> (i) <math>X_1 + 4X_2 \leq 4</math><br/> (ii) <math>X_1 + X_2 \leq 2</math><br/> <math>X_1, X_2 \geq 0</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13          | 4       | L4     |         |        |         |  |      |        |      |        |      |        |   |   |   |   |   |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |   |   |    |   |    |   |   |    |   |    |



|            |                                                                         |    |   |    |
|------------|-------------------------------------------------------------------------|----|---|----|
| 15 (a) (i) | Explain the procedure of simulated annealing algorithm with an example. | 13 | 5 | L3 |
|------------|-------------------------------------------------------------------------|----|---|----|

OR

|            |                                                                                             |    |   |    |
|------------|---------------------------------------------------------------------------------------------|----|---|----|
| 15 (b) (i) | Draw the flow chart of Genetic Algorithm and explain the steps with numerical illustration. | 13 | 5 | L3 |
|------------|---------------------------------------------------------------------------------------------|----|---|----|

**PART- C (1 x 15 = 15 Marks)**

(Q.No.16 is compulsory)

| Q. No | Questions                                                                                                                                                                                                                                                                                            | Marks | CO | BL |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 16.   | <p>Solve the following integer programming problems, using Gomory's cutting plane algorithm:</p> <p>Max <math>Z = 2X_1 + 1.7X_2</math></p> <p>subject to</p> <p>(a) <math>4 X_1 + 3 X_2 \leq 7</math></p> <p>(b) <math>X_1 + X_2 \leq 4</math></p> <p><math>X_1, X_2 \geq 0</math> and integers.</p> | 15    | 1  | L5 |

